
Review of Linear Algebra and Extensions

This course will start with a review of linear algebra, from the most
elementary concepts which you should have seen long ago to more ad-
vanced theorems which you might not have learned about.

In our review, we will consider the algebra of vectors and matrices.

We will also review the matrix determinant, trace and eigenvalues and
eigenvectors.

We will also review linear spaces and their properties.

Advanced Topics include the Cayley-Hamilton theorem and the Perron-
Frobenius theorem.
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Vectors

Vectors are lists of numbers. The individual numbers are referred to as
elements. The following are examples of column vectors:

x =

[
1
1

]
, y =

 −12
0

 , w =


3
0.1
−7.2
5

 , z =

 4
0
0

 ,
Row vectors are represented horizontally, and they are defined as the
transpose of column vectors. We will use T to denote the transpose
operation.

The following are examples of row vectors:

xT = [1 1] , yT = [−1 2 0]

The length of a vector is its number of elements. For example, z has
length 4, and yT has length 3.
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Graphical Display of Vectors in 2 Dimensions:
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Unit Vectors

Unit vectors are vectors whose squared elements sum to 1. For example,

x =

[
1/2√
3/2

]
is a unit vector because

1

22
+

3

22
= 1.

x =

[
1
1

]

is not a unit vector because 12 +12 6= 1.
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Vector Algebra – Addition

Vectors having the same length can be added together, elementwise.

For example, if

x =

[
1
3

]
, and y =

[
5
9

]
,

then

x+ y =

[
6
12

]
.

5



Scalar multiplication

A vector can be multiplied by a single number. The result is a vector
of the same length whose elements are the products of the original
elements with that single number.

For example, if

x =

[
1
3

]
, and y =

 5
9
−4

 ,
then

7x =

[
7
21

]
and − 2y =

 −10−18
8

 .
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Inner Product

The inner product (or dot product) is the usual way of multiplying vectors
which have the same length.

It is defined as the sum of the products of the corresponding elements.

The result is a single number (a scalar).

The inner product of two vectors x and y is usually denoted by the
product of the transpose of x with y:

xTy =
n∑
i=1

xiyi.

Here, xi denotes the ith element of the vector x which is assumed to
have length n. Another notation for the inner product is

〈x,y〉.
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Inner Product – Example

If

x =

[
1
3

]
, and y =

[
5
9

]
,

then

xTy = 5+ 27 = 32.

Note that

xTy = yTx.
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Orthogonal Vectors

Vectors are said to be orthogonal if their inner product is 0.

In two dimensions, this occurs if the two vectors are perpendicular to
each other.

For example, if

x =

[
1
2

]
, and y =

[
−1
0.5

]
,

then

xTy = −1+ 1 = 0.

x and y are orthogonal.
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Vector Norm

The norm of a vector is the square root of the inner product of the
vector with itself:

||x|| =
√
xTx =

√√√√ n∑
i=1

x2i .

For example, if

x =

[
1
2

]
,

then

xTx = 1+ 4 = 5.

||x|| =
√
5.

Note that unit vectors have a norm of 1.
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The Norm is the Distance Between Vector Endpoints
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Projection

The projection of a vector x onto a vector y is defined as

projy (x) =
yTxy

||y||2
.

Note that if x and y are orthogonal,

projy (x) = 0.

If x = y, then

projy (x) = y.
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Matrices

Matrices are rectangular arrays of numbers.

A matrix with m rows and n columns is said to be an m× n matrix.

The numbers m and n are the dimensions of the matrix. For example,

A =

 3 −4
5 0
1 2


is a 3 × 2 matrix, since it consists of 3 rows and 2 columns. The
dimensions of A are 3 and 2.

The (i, j) element of a matrix B is denoted by Bi,j and is located in
the ith row and jth column of B. For example, A2,1 = 5.
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Diagonal Matrices

A matrix A is called a diagonal matrix if the only nonzero elements of
A are of the form Ai,i. These entries are the diagonal entries of A.

For example,

A =

[
3 0
0 2

]
is a diagonal matrix.
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Matrix Transpose

The matrix B is said to be the transpose of a matrix A if Bj,i = Ai,j
for all i and j.

For example, if

A =

 3 −4
5 0
1 2


then

B = AT =

[
3 5 1
−4 0 2

]
is the transpose of A.
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Symmetry

A matrix A is said to be symmetric if AT = A.

If A is symmetric, then Ai,j = Aj,i for all i and j.

For example,

A =

[
3 5
5 2

]
is a symmetric matrix.
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Scalar Multiplication

If A is a matrix and b is a number, then a matrix C can be defined as

C = bA

where the (i, j) element of C is Ci,j = bAi,j. In other words, each
element of C is the product of the corresponding element of A multiplied
by b.

For example, if

A =

 3 −4
5 0
1 2


and b = −1, then

C = bA = −A =

 −3 4
−5 0
−1 −2


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Matrix Addition

If A and B are m× n matrices, then their sum can be defined as

C = A+B

where the (i, j) element of C is Ci,j = Ai,j+Bi,j. This is element-wise
addition.

For example, if

A =

 3 −4
5 0
1 2

 and B =

 2 3
1 8
−1 −2

 ,
then

A+B =

 5 −1
6 8
0 0

 .
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More Addition Examples

If P is the 3 × 2 matrix whose elements are all 0’s, then we say that
P = 0 and

A+ 0 = A

Also,

A+ (−A) = 0.

The matrix −A is the additive inverse of A. Note that there is some-
times also a multiplicative inverse which will be defined later. The addi-
tive inverse always exists, but the multiplicative inverse does not always
exist.

A matrix that has a multiplicative inverse is said to be invertible. A
matrix that has no multiplicative inverse is said to be singular.
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Matrix Multiplication

There are several ways that one could define matrix multiplication.

Here, we will use the most important definition and the one that is
almost always assumed when one talks about “multiplying matrices”.

Given an `×m matrix A and an m× n matrix B, then product AB is
an ` × n matrix C whose (i, j) element is the inner product of the ith
row of A with the jth column of B:

Ci,j =
m∑
k=1

Ai,kBk,j.

Note that matrix multiplication cannot be defined in this way if the
dimensions of A and B do not conform. That is, the number of columns
of A must match the number of rows of B in order for AB to be defined.
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Example

A =

 3 −4
5 0
1 2

 and B = AT =

[
3 5 1
−4 0 2

]

so

AB =

 25 15 −5
15 25 5
−5 5 5

 .

In this case, B = AT, so we have an example of the fact that AAT is
always a symmetric matrix.
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Matrix Identity

A diagonal matrix whose diagonal entries are all 1 is called an identity
matrix. It is usually denoted by the symbol I. Sometimes, we will use
the symbol In to denote the n× n identity matrix.

The 3× 3 identity matrix is given by

I3 = I =

 1 0 0
0 1 0
0 0 1

 .
The identity matrix has the property that multiplication with a matrix
A always returns the matrix A:

IA = A = AI.
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Matrix Inverse

A matrix A is said to have an inverse (or to be invertible) if

AB = BA = I

for some matrix B.

B is called the inverse of A and

B = A−1.

Check that if

A =

[
3 −4
1 2

]
,

then

A−1 =

[
0.2 0.4
−0.1 0.3

]
.
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Relations involving Transposes and Inverses

The inverse of PT is given by

(PT)−1 = (P−1)T

provided that P is invertible. Note that if P is not invertible, then
neither is PT.

The transpose of (P1P2) is

(P1P2)
T = PT

2P
T
1 .

The inverse of (P1P2) is

(P1P2)
−1 = P−12 P−11 .

Note that in order for the inverse of P1P2 to exist, P1 and P2 must
both be invertible.
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Orthogonal Matrices

A matrix A is said to be orthogonal if AT = A−1.

The columns of an orthogonal matrix A must all be unit vectors and
must be mutually orthogonal.
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Associativity and Commutativity

Matrices are associative and commutative under the addition operation:

A+ (B+C) = (A+B) +C

A+B = B+A

Matrices are associative under the multiplication operation, but not com-
mutative in general

A(BC) = (AB)C

AB 6= BA

(Associativity only holds for matrices of finite dimensions; matrices with
infinite dimension do not have the associativity property.)
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Idempotent Matrices

A matrix A is said to be idempotent if A2 = AA = A.

For example, check that P is idempotent if

P =
1

14

 1 2 3
2 4 6
3 6 9

 ,
then P is an idempotent matrix. That is, P2 = P.
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Solving Linear Equations

A very important application of linear algebra is in solving systems of
linear equations. For example, we can represent the equations

2x2 + x3 = 1

x1 + x3 = 2

−2x2 + x3 = 3

as

Ax = y

where

A =

 0 2 1
1 0 1
0 −2 1

 , x =

 x1x2
x3

 , y =

 1
2
3


and solve them as

x = A−1y =

 −0.5 1 −0.5
0.25 0 −0.25
0.5 0 0.5


 1
2
3

 =

 0
−0.5
2.0


28



Gaussian elimination

The way to solve linear equations which is most commonly described in
linear algebra courses is Gaussian elimination. Details on this method
are described, for example, at

http://en.wikipedia.org/wiki/Gaussian_elimination

Later in the course, we will consider better alternatives to this approach.
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Trace

The trace of a matrix is the sum of its diagonal entries. It has a number
of important properties, including the linearity properties:

tr(P1 +P2) = tr(P1) + tr(P2)

and

tr(αP) = αtr(P).

It also satisfies a commutativity property, even for non-commutative
matrices:

tr(P1P2) = tr(P2P1)

To verify the last property, note that

tr(P1P2) =
n∑
i=1

(P1P2)ii =
n∑
i=1

∑
j=1

(P1)ij(P2)ji

=
n∑

j=1

n∑
i=1

(P2)ji(P1)ij = tr(P2P1).]

30



Determinant

According to Wikipedia, “the determinant ‘determines’ whether the sys-
tem has a unique solution (which occurs precisely if the determinant is
non-zero). In this sense, determinants were first used in the Chinese
mathematics textbook The Nine Chapters on the Mathematical Art:”

九章算術

The determinant of an n× n matrix A is given by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σi.
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Matrices

Determinant

The sum is computed over all permutations σ of the set {1, 2, ..., n}.
A permutation is a function that reorders this set of integers.

In any of the n! summands, the term

n∏
i=1

Ai,σi

is notation for the product of the entries at positions (i, σi), where i

ranges from 1 to n:

A1,σ1 ·A2,σ2 · · ·An,σn.
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Some Determinant Properties

det(A) 6= 0 if and only if A−1 exists.

det(P1P2) = det(P1) det(P2).

det(αP) = αn det(P).

det(AT) = det(A).

det(AB) = det(A) det(B).

det(A−1) =
1

det(A)
.

det(exp(A)) = exp(tr(A))

tr(A) = log(det(exp(A))).
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Eigenvalues and Eigenvectors

Consider an n× n matrix A.

If Ax = λx, for some x 6= 0 and a scalar λ, then x is said to be an
eigenvector of A, and λ is an eigenvalue.

A has n eigenvalues (some may be repeated). If an eigenvalue λ is
repeated k times, we say that it has algebraic multiplicity k.

Eigenvalues can be real or complex-valued.
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Properties of Eigenvalues and Eigenvectors

If A is symmetric, then its eigenvalues are all real, and it will have n

linearly independent eigenvectors.

The sum of the eigenvalues is equal to tr(A).

The product of the eigenvalues is equal to det(A). Thus, A−1 exists
iff all eigenvalues of A are nonzero.

If B is an invertible matrix, then the eigenvalues of A are identical to the
eigenvalues of BAB−1. BAB−1 is called a similarity transformation.

If C is a triangular matrix, the eigenvalues appear along the diagonal of
C.
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Quadratic Forms

Suppose A is a symmetric n × n matrix and x is a vector of length n.
Then

xTAx

is a quadratic form in x. It can be written as a quadratic polynomial in
the elements of x.

For example, if

A =

[
2 3
3 4

]
,

then

xTAx = 2x21 +6x1x2 +4x22.
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Positive Definite Matrices

A symmetric matrix A is said to be positive definite if its quadratic forms
in x are positive when x 6= 0.

In other words, A is positive definite if and only if

xTAx > 0

whenever x 6= 0.

Completing the square for the previous example,

xTAx = 2(x1 +1.5x2)
2 − .5x22.

We can make the first term of right hand side identically 0 by taking
x1 = −1.5x2 for any real x2, say x2 = 1. That means that at x =
[−1.5 1],

xTAx = −.5(1)2 = −.5 < 0.

Therefore, the matrix A is not positive definite.
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Exercises

1. By completing the square, verify that

B =

[
2 1
1 4

]
is positive definite.

2. Show that if λ is an eigenvalue of a positive definite matrix, then
λ > 0.

3. Find the eigenvalues of the matrix A used in the example, and verify
that not all of them are positive. Verify that the eigenvalues of B
are all positive.

4. Set

C =

 2 1 0
1 4 1
0 1 4

 .
Is C positive definite?
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Linear Spaces

Vector spaces are sets of objects called vectors on which the operations
of addition and scalar multiplication are defined, and in which there is a
0 vector. For each vector x in a vector space, there is a corresponding
vector called −x which satisfies the property:

x+ (−x) = 0.

If a vector x is multiplied by a scalar a, then ax is also a vector. If x
and y are vectors, then x+ y is a vector.

These last two properties are linearity properties implying that vector
spaces are linear spaces.

A linear combination of vectors x1, . . . ,xk is any sum of the form

a1x1 + a2x2 + · · ·+ akxk

where a1, . . . , ak are scalars.

39



Subspaces

A subspace is a subset of a vector space which satisfies all of the axioms
of a vector space.

To check that a subset of a vector space is a subspace, it suffices to
check that if x and y are members of the subset, then so is ax + by,
for all scalars a and b.

For example, consider the set of all vectors of length 2 which are or-
thogonal to the vector [1 1]. This is a subspace, since if x and y are
both orthogonal to [1 1], then so is ax+ by, for any scalars a and b.

40



Span

A set of vectors is said to span a vector space if any vector x in the
vector space can be expressed as a linear combination of the spanning
set.

For example, consider the subspace of vectors orthogonal to the vector
[1 1 1].

The vectors [1 0 − 1]T and [2 − 1 − 1]T span this subspace.

To see this, let x be any vector in this subspace, and note that x1 +
x2 + x3 = 0.

x = a[1 0 − 1]T + b[2 − 1 − 1]T

where b = −x2 and a = x2 − x3 = x1 + 2x2. The latter equality is
consistent with x1 + x2 + x3 = 0.
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Linear Independence and Dependence

A set of k linearly independent vectors x1,x2, . . . ,xk is said to be linearly
independent if the only solution to the system of equations

a1x1 + a2x2 + · · · akxk = 0

is ai = 0, for i = 1,2, . . . , k.

For example, [1 0 − 1] and [2 − 1 − 1] are linearly independent.

If the set of vectors is not linearly independent, then it is said to be
linearly dependent.
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Basis

A set of linear independent vectors is a basis for a vector space if it
spans the space.

For example, {[1 0 − 1], [2 − 1 − 1]} is a basis for the subspace
of vectors orthogonal to [1 1 1].
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Rank of a Matrix

The rank of a matrix A is equal to the number of linearly independent
columns of A.

It can be shown that the rank of an n × n matrix A is equal to n − k
where k is the algebraic multiplicity of the 0 eigenvalue.
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Gramm-Schmidt Orthogonalization

Given a set of k linearly independent vectors x1,x2, . . . ,xk, the Gramm-
Schmidt orthogonalization procedure can be used to obtain a set of k
orthogonal vectors z1, z2, . . . , zk which spans the same space as that
spanned by x1, . . . ,xk.

The Gramm-Schmidt procedure is as follows:

y1 = x1, z1 =
y1
‖y1‖

(1)

y2 = x2 − projy1 (x2), z2 =
y2
‖y2‖

(2)

y3 = x3 − projy1 (x3)− projy2 (x3), z3 =
y3
‖y3‖

(3)

... ... (4)

yk = xk −
k−1∑
j=1

projyj (xk), zk =
yk
‖yk‖

. (5)

45



Example

Apply the Gramm-Schmidt procedure to the following set of vectors to
obtain an orthogonal set of vectors{

x1 =

(
3
1

)
,x2 =

(
2
2

)}
.

y1 = x1 =

(
3
1

)
y2 = x2 − projy1 (x2) =

(
2
2

)
−

proj
(31)

(

(
2
2

)
) =

(
−2/5
6/5

)
.
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Example

Check that the vectors u1 and u2 are orthogonal:

〈y1,y2〉 =
〈(

3
1

)
,

(
−2/5
6/5

)〉
= −

6

5
+

6

5
= 0,

We can then normalize the vectors by dividing out their norms

z1 =
1√
10

(
3
1

)
z2 =

1√
40
25

(
−2/5
6/5

)
=

1√
10

(
−1
3

)
.
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Exercise: Analysis of an Idempotent Matrix

Suppose P is a symmetric idempotent matrix (that is, PT = P and
P2 = P).

The following slides answer these questions:

1. Find the eigenvalues of P: λ1, λ2, . . . , λn.
2. Show that the eigenvectors of P span Rn.
3. Show that there is an n × n matrix X for which P = XDX−1 for

some diagonal matrix D.
4. Show that P = ZDZT for an orthogonal matrix Z and for a diagonal

matrix D.
5. Show that tr(P) =

∑
λi = number of nonzero eigenvalues of P.
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Eigenvalues of P

Find the eigenvalues of P: λ1, λ2, . . . , λn.

Suppose x 6= 0 is an eigenvector for P. Then

Px = λx

for some scalar λ. Premultiplying both sides by P, we have

P2x = λPx = λ2x

but

P2x = Px = λx

so λ = λ2 which means that λ must be 0 or 1. Thus, all n eigenvalues
of P must be 0’s and 1’s.
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The eigenvectors of P span Rn

Suppose x ∈ Rn. Then x = Px+ (I−P)x.

Note that P(Px) = Px, so Px must be an eigenvector of P (corre-
sponding to the eigenvalue 1).

Note also that P[(I − P)x] = 0, so (I − P)x is also an eigenvector of
P (corresponding to the eigenvalue 0).

Thus any x ∈ Rn can be expressed as a sum (a special case of a linear
combination) of eigenvectors of P. Hence, the eigenvectors of P must
span Rn.
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P = XDX−1 for diagonal D

Show that there is an n×n matrix X for which P = XDX−1 for diagonal
D.

Let X be the matrix whose n columns are the n (linearly independent)
eigenvectors of P.

Then PX = XD for a diagonal matrix D whose diagonal consists only
of 0’s and 1’s (the eigenvalues of P).

Thus, P = XDX−1.
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P = ZDZT for diagonal D

Show that there is an n×n matrix Z for which P = ZDZT for diagonal
D.

Suppose there are k linearly independent eigenvectors corresponding to
the eigenvalue 1. These vectors span a k dimensional subspace of Rn.

It is possible to linearly transform these vectors to form an orthogonal
basis for this subspace (one way to do this is via the Gramm-Schmidt
orthogonalization procedure).

The n−k eigenvectors corresponding to the 0 eigenvalue can be similarly
transformed.

It is an easy exercise to show that the eigenvectors corresponding to the
0 eigenvalue are orthogonal to the eigenvectors for the 1 eigenvalue.

Therefore, we can use the entire set of orthogonalized eigenvectors as
columns of a matrix Z which will thus be orthogonal, i.e. Z−1 = ZT.
To finish off the argument, note that PZ = ZD, and argue as above.
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The Trace of P Equals the Number of Nonzero Eigenvalues

Show that tr(P) =
∑
λi = number of nonzero eigenvalues of P

tr(P) = tr(XDXT) = tr(XTXD) = tr(D)

which is the total number of nonzero eigenvalues of P.
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Cayley-Hamilton Theorem

Suppose A is an n× n matrix. Define

c(λ) = det(λI−A).

Then c(A) = 0.
Example.

A =

[
1 1
0 1

]

c(λ) = (λ− 1)2 so (A− I)2 = 0.
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Perron-Frobenius Theorem

Suppose A is an n × n non-negative matrix with the property that for
some integer k, all elements of Ak are positive.

Then there exists an eigenvalue λ such that

* λ > 0.
* its unique right and left eigenvectors are strictly positive.
* λ is a simple root of the characteristic equation of A.
* all other eigenvalues are smaller than λ in absolute value.
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Example

Consider the matrix

A =

[
1 1
1 1

]
.

The characteristic polynomial is c(λ) = (λ− 1)2 − 1 = λ2 − 2λ.

The largest eigenvalue is λ = 2.

The right eigenvector for λ = 2 is [1 1]T > 0.

λ = 2 is a simple root of λ(λ− 2).

The other eigenvalue is 0.
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