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Definition
A vector space is a set V that is closed both under addition
of its members and under scalar multiplication. Namely if
x, y ∈ V then x + y ∈ V and, when α is a scalar, αx ∈ V .

• (This definition is loose. For a more formal discussion,
see sections 27.1 and 27.6 in Simon and Blume)

• element of a vector space is called a vector
• A vector space must include the origin (or more formally

the ’zero element’).

Definition
A subspace of a vector space V is a subset of V that is
closed under addition of its members and under scalar
multiplication.

• A subspace of a vector space is sometimes called a
linear subspace.

• A subspace of a vector space is itself a vector space.
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Example (Euclidean space)
Rn over the field R is a vector space in which vector addition
and scalar multiplication are defined in the usual way.
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Example
Subspaces of R2:

• the R2 itself
• any straight line passing through the origin
• the origin
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Vector spaces of functions

Example
Let V = all continuous functions from [0,1] to R. For
f ,g ∈ V , define f + g by (f + g)(x) = f(x) + g(x). Define
scalar multiplication as (αf)(x) = αf(x). Then this is a
vector space.

Example
More examples:

• The set of all k times continuously differentiable
functions on R.

• The set of all polynomials of degree less than or equal
to k.
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Definition
Let V be a vector space and v1, ..., vk ∈ V . A linear
combination of v1, ..., vk is any vector

c1v1 + ...+ ckvk

where c1, ..., ck are scalars.

• Question: How can we be sure that
c1v1 + ...+ ckvk ∈ V?

• A simple linear combination includes the operations of
vector addition and of scalar multiplication.
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Definition
Let V be a vector space and W ⊆ V . The span of W is the
set of all finite linear combinations of elements of W and
denoted by span(W ).

• The span of any W ⊆ V is a linear subspace.
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Example
Let V be the vector space of all functions from [0,1] to R.
The span of {1, x, ..., xn}, all defined on [0,1], is the set of all
polynomials of degree less than or equal n on [0,1].
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Definition
A set of vectors v1, ..., vk ∈ V , is linearly independent if the
only solution to

k∑
j=1

cjvj = 0

is c1 = c2 = ... = ck = 0.
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Definition
A basis of a vector space V is any set of linearly
independent vectors b1, ...,bk such that
V = span{b1, ..., bk}.

Definition
The dimension of a vector space, V , is the cardinality of the
largest set of linearly independent elements in V and is
denoted by dim(V).

12 / 64



Vector Spaces

Summer 2016

Vector spaces
Vector spaces
Examples
Linear combinations

Dimension and basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products

Types of matrices
Invertibility

Determinants

Normed
vector spaces
Examples

Inner product
spaces

Row, column,
and null space
Row space
Column space
Null space

Example
A basis for Rn is e1 = (1,0, ...,0), e2 = (0,1,0, ..., 0), ...,
en = (0, ..., 0,1). This basis is called the standard basis of
Rn.

Example
What is the dimension of each of the examples of vector
spaces above? Can you find a basis for them?
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Basis gives coordinates

Lemma
Let {b1, ..., bk} be a basis for a vector space V. Then
∀v ∈ V there exists a unique v1, ..., vk ∈ F and such that
v =

∑k
i=1 vibi

Proof.
• B spans V , so such (v1, ..., vk) exist.
• Suppose there exists another such (v ′

1, ..., v ′
k). Then

v =
∑

vibi =
∑

v ′
i bi∑

vibi −
∑

v ′
i bi =0∑

(vi − vi)
′bi =0.
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Dimension = |Basis |

• If B is a basis for a vector space V and I ⊆ V is a set of
linearly independent elements then |I| ≤ |B|.

• Any two bases for a vector space have the same
cardinality.
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Linear transformations
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Definition
A linear transformation (aka linear function) is a function,
A, from a vector space V to a vector space W such that
∀v1, v2 ∈ V ,

A(v1 + v2) = Av1 + Av2

and

A(av1) = aAv1

for all scalars a.
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Theorem
For any linear transformation, A, from Rn to Rm there is an
associated m by n matrix,a11 · · · a1n

... . . . ...
am1 · · · amn


where aij is defined by Aej =

∑m
i=1 aijei . Conversely, for any

m by n matrix, there is an associated linear transformation
from Rn to Rm defined by Aej =

∑n
i=1 aij .
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Proof.
• Let A be a linear transformation from Rn to Rm

• b1,b2, .., bn basis for Rn

• ∀v ∈ V ∃αj ∈ R s.t. v =
∑n

j=1 αjbj

• Av =
∑n

j=1 αjAbj so only need Abj to determine A
• d1, ..., dm basis for Rm , so

Abj =
m∑

i=1
aijdi .
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Matrix operations and properties
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Addition

• A =

a11 · · · a1n
... . . . ...

am1 · · · amn

, B =

b11 · · · b1n
... . . . ...

bm1 · · · bmn


• Linear transformation implies (A + B)x = Ax + Bx

(A + B)ei =Aei + Bei

=
n∑

j=1
aijej +

n∑
j=1

bijej

=
n∑

j=1
(aij + bij)ej ,

• so A + B =

a + b11 · · · a + b1n
... . . . ...

a + bm1 · · · a + bmn

.
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Addition properties

1 A + (B + C) = (A + B) + C,
2 A + B = B + A ,
3 A + 0 = A, where 0 is an m by n matrix of zeros, and

4 A + (−A) = 0 where −A =

−a11 · · · −a1n
... . . . ...

−am1 · · · −amn

.
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Scalar multiplication

• Linear transformation requires Aαx = αAx
• so,

αA =

αa11 · · · αa1n
... . . . ...

αam1 · · · αamn


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The space of matrices is a
vector space

• L(Rn,Rm) ≡ all m by n matrices ≡ all linear
transformations from Rn to Rm with addition and
multiplication as above is a vector space

• Question: L(Rn,Rm) is isomorphic to what other vector
space that we have seen?

• L(V ,W ) ≡ all linear transformations from V → W is a
vector space
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Matrix multiplication
• Multiplication ≡ composition of linear transformations
• A : Rn → Rm, B : Rp → Rn.
• Consider A(Bek)

A(Bek) =A(
n∑

j=1
bjkei)

=
n∑

j=1
bjkAei

=
n∑

j=1
bjk

( m∑
l=1

aijel

)

=
m∑

l=1

 n∑
j=1

aijbjk

el

=


∑n

j=1 a1jbj1 · · ·
∑n

j=1 a1jbjp
... . . . ...∑n

j=1 amjbj1 · · ·
∑n

j=1 amjbjp

el

=(AB)el .
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Multiplication properties

1 A(BC) = (AB)C
2 A(B + C) = AB + AC and (A + B)C = AC + BC
3 AIn = A where A is m by n and In is the identity linear

transformation from Rn to Rn such that Inx = x∀x ∈ Rn

4 Not commutative
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Definition
A real inner product space is a vector space over the field
R with an additional operation called the inner product that
is function from V × V to R. We denote the inner product
of v1, v2 ∈ V by ⟨v1, v2⟩. It has the following properties:

1 ⟨v1, v2⟩ = ⟨v2, v1⟩
2 ⟨av1 + bv2, v3⟩ = a ⟨v1, v3⟩+ b ⟨v2, v3⟩ for a,b ∈ R
3 ⟨v, v⟩ ≥ 0 and equals 0 iff v = 0.

27 / 64



Vector Spaces

Summer 2016

Vector spaces
Vector spaces
Examples
Linear combinations

Dimension and basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products

Types of matrices
Invertibility

Determinants

Normed
vector spaces
Examples

Inner product
spaces

Row, column,
and null space
Row space
Column space
Null space

Example
Rn with the inner product, < x, y >=

∑n
i=1 xiyi , is an inner

product space.

Example
L2(0,1) with ⟨f ,g⟩ ≡

∫ 1
0 f(x)g(x)dx is an inner product

space.
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Transpose

Definition
Given a linear transformation, A, from a real inner product
space V to a real inner product space W , the transpose of
A, denoted AT (or often A′) is a linear transformation from W
to V such that ∀v ∈ V ,w ∈ W

⟨Av,w⟩ =
⟨

v,AT w
⟩
.
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Transpose for matrices
•

⟨Av,w⟩ =
m∑

i=1

 n∑
j=1

aijvj

wi

=
m∑

i=1

n∑
j=1

aijwivj

• ⟨
v,AT w

⟩
=

n∑
j=1

vj

( m∑
i=1

aT
ji wi

)

=
m∑

i=1

n∑
j=1

aT
ji wivj

• If ⟨Av,w⟩ =
⟨
v,AT w

⟩
, for any v and w we must have

aT
ji = aij

• The transpose of a matrix simply swaps rows for
columns
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Transpose properties

1 (A + B)T = AT + BT

2 (AT )T = A
3 (αA)T = αAT

4 (AB)T = BT AT .
5 rankA = rankAT
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Types of matrices

Definition
A column vector is any m by 1 matrix.

Definition
A row vector is any 1 by n matrix.

Definition
A square matrix has the same number of rows and
columns.
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Definition
A diagonal matrix is a square matrix with non-zero entries
only along its diagonal, i.e. aij = 0 for all i ̸= j.

Definition
An upper triangular matrix is a square matrix that has
non-zero entries only on or above its diagonal, i.e. aij = 0 for
all j > i. A lower triangular matrix is the transpose of an
upper triangular matrix.

Definition
A matrix is symmetric if A = AT .
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Definition
A matrix is idempotent if AA = A.

Definition
A permutation matrix is a square matrix of 1’s and 0’s with
exactly one 1 in each row or column.

Definition
A nonsingular matrix is a square matrix whose rank equals
its number of columns.

Definition
An orthogonal matrix is a square matrix such that AT A = I.
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Invertibility

Definition
Let A be a linear transformation from V to W . Let B be a
linear transfromation from W to V . B is a right inverse of A
if AB = IV . Let C be a linear tranfromation from V to W . C is
a left inverse of A if CA = IW .

Lemma
If A is a linear transformation from V to V and B is a right
inverse, and C a left inverse, then B = C.
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Lemma
Let A be a linear tranformation from V to V, and suppose A
is invertible. Then A is nonsingular and the unique solution
to Ax = b is x = A−1b.

Lemma
If A is nonsingular, then A−1 exists.

Corollary
A square matrix A is invertible if and only if rankA is equal to
its number of columns.
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Properties of matrix inverse

1 (AB)−1 = B−1A−1

2 (AT )−1 = (A−1)T

3 (A−1)−1 = A
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Section 4

Determinants
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Determinants

• Determinant: geometry and invertibility
• Invert 2 by 2 matrix by Gauss-Jordan elimination:(

a b 1 0
c d 0 1

)
≃
(

a b 1 0
0 ad−bc

a − c
a 1

)
≃
(

a b 1 0
0 1 − c

ad−bc
a

ad−bc

)
≃
(

a 0 ad
ad−bc

−ba
ad−bc

0 1 − c
ad−bc

a
ad−bc

)
≃
(

1 0 d
ad−bc

−b
ad−bc

0 1 − c
ad−bc

a
ad−bc .

)
• Needed ad − bc ̸= 0.
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Definition
Let A be an n by n matrix consisting of column vectors
a1, ..., an. The determinant of A is the unique function such
that

1 detIn = 1.
2 As a function of the columnes, det is an alternating

form: det(A) = 0 iff a1, ...,an are linearly dependent.
3 As a function of the columnes, det is multi-linear:

det(a1, ..., baj+cv, ..., an) = bdet(A)+cdet(a1, ..., v, ...an)
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• 1 natural, needed for volume interpretation
• 2 ensures detA = 0 iff A singular

Lemma
Let A be an n by n matrix. The A is singular if and only if the
columns of A are linearly dependent.

Corollary
A is nonsingular if and only if detA ̸= 0.
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• 3 is related to volume interpretation
• Consider diagonal matrices, volume interpretation

require multi-linearity
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Definition
The determinant of a square matrix A is defined recursively
as

1 For 1 by 1 matrices, detA = a11

2 For n by n matrices,

detA =
n∑

j=1
(−1)1+ja1jdetA−1,−j

where A−i,−j is the n − 1 by n − 1 matrix obtained by
deleting the ith row and jth column of A.

• minor: detA−i,−j

• cofactor: (−1)i+jdetA−i,−j
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Determinant properties

Theorem
The two definitions of the determinant, (37) and (40), are
equivalent.

1 detAT = detA
2 det(AB) = (detA)(detB)
3 detA−1 = (detA)−1

4 Usually, det(A + B) ̸= detA + detB
5 If A is diagonal, detA =

∏n
i=1 aii

6 If A is upper or lower triangular detA =
∏n

i=1 aii .
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Theorem
Let A be nonsingular. Then,

1 A−1 =

1
detA

 detA−1,−1 · · · (−1)1+ndetA−n,−1
... . . . ...

(−1)1+ndetA−1,−n · · · (−1)n+ndetA−n,−n


2 (Cramer’s rule) The unique solution to Ax = b is

xi =
detBi
detA

where Bi is the matrix A with the ith column replaced by
b.
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Normed vector spaces
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Normed vector spaces

• Measure of length or distance

Definition
A normed vector space, (V ,F,+, ·, ∥·∥), is a vector space
with a function, called the norm, from V to F and denoted by
∥v∥ with the following properties:

1 ∥v∥ ≥ 0 and ∥v∥ = 0 iff v = 0,
2 ∥αv∥ = |α| ∥v∥ for all α ∈ F,
3 The triangle inequality holds:

∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥

for all v1, v2 ∈ V .

47 / 64



Vector Spaces

Summer 2016

Vector spaces
Vector spaces
Examples
Linear combinations

Dimension and basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products

Types of matrices
Invertibility

Determinants

Normed
vector spaces
Examples

Inner product
spaces

Row, column,
and null space
Row space
Column space
Null space

Examples

Example
R3 is a normed vector space with norm

∥x∥ =
√

x2
1 + x2

2 + x2
3 .

This norm is exactly how we usually measure distance. For
this reason, it is called the Euclidean norm.
More generally, for any n, Rn, is a normed vector space with
norm

∥x∥ =

√√√√ n∑
i=1

x2
i .
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Inner product spaces

Definition
A real inner product space is a vector space over the field
R with an additional operation called the inner product that
is function from V × V to R. We denote the inner product of
v1, v2 ∈ V by ⟨v1, v2⟩. It has the following properties:

1 ⟨v1, v2⟩ = ⟨v2, v1⟩
2 ⟨av1 + bv2, v3⟩ = a ⟨v1, v3⟩+ b ⟨v2, v3⟩ for a,b ∈ R
3 ⟨v, v⟩ ≥ 0 and equals 0 iff v = 0.

• The norm of an inner product space is defined as

∥x∥ =
√

⟨x, x⟩.
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Example

• Rn equipped with the inner product

⟨x, y⟩ =
n∑

i=1
xiyi = xT y

is an inner product space.
• Norm induced by the inner product is the Euclidean

norm

∥x∥ =
√

⟨x, x⟩ =

√√√√ n∑
i=1

x2
i
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Angle between Two Vectors

Theorem (Law of cosine)
Let u, v ∈ Rn, then the angle θ between them satisfies

∥u∥ ∥v∥ cos(θ) = ⟨u, v⟩ .

Corollary (Cauchy-Schwarz inequality)
Let u, v ∈ Rn, then we have

| ⟨u, v⟩ | ≤ ∥u∥ ∥v∥

• (Note) In fact, the Cauchy-Schwarz inequality holds
more generally in any inner product space.
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Theorem (Triangle inequality)
Let x, y ∈ V, an inner product space, then we have

∥x + y∥ ≤ ∥x∥+ ∥y∥ .

Proof.

∥x + y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + 2 |⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2 Cauchy − Schwartz
= (∥x∥+ ∥y∥)2

Since norms are nonnegative, taking square roots gives the
result.
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Orthogonality
Definition
Let x and y be vectors in an inner product space. Then we
say x and y are orthogonal iff ⟨x, y⟩ = 0.

Theorem (Pythagoras theorem)
Let x, y ∈ V, an inner product space, be orthogonal to each
other. Then we have

∥x + y∥2 = ∥x∥2 + ∥y∥2

Proof.

∥x + y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

Orthogonality of x and y implies ⟨x, y⟩ = 0 and the result
follows.
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Section 7

Row, column, and null space

55 / 64



Vector Spaces

Summer 2016

Vector spaces
Vector spaces
Examples
Linear combinations

Dimension and basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products

Types of matrices
Invertibility

Determinants

Normed
vector spaces
Examples

Inner product
spaces

Row, column,
and null space
Row space
Column space
Null space

Row space
Definition
Let A be an m by n matrix. The row space of A, denoted
Row(A), is the space spanned by the row vectors of A.

• Row(A) ⊆ Rn

Lemma
Performing Gaussian elimination does not change the row
space of a matrix.

Proof.
Let a1, ..., am be the row vectors of A. Each step of
Gaussian elimination transforms some aj into aj + gak with
k ̸= j or g ̸= −1. Can show that

span(a1, ...,am) = span(a1 + gak , ...,am).

Corollary
The dimension of the row space of a matrix is equal to its
rank.
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Column space

Definition
Let A be an m by n matrix. The column space of A, denoted
Col(A), is the space spanned by the column vectors of A.

• ColA ⊆ Rm

Lemma
Let A be an m by n matrix. Then Ax = b has a solution iff
b ∈ Col(A).

57 / 64



Vector Spaces

Summer 2016

Vector spaces
Vector spaces
Examples
Linear combinations

Dimension and basis

Linear trans-
formations

Matrix
operations
and properties
Addition
Scalar multiplication

Matrix multiplication
Transpose
Transpose and
inner products

Types of matrices
Invertibility

Determinants

Normed
vector spaces
Examples

Inner product
spaces

Row, column,
and null space
Row space
Column space
Null space

Definition
A column of a matrix, A, is basic if the corresponding
column of the row echelon form, Ar , contains a pivot.

Theorem
The basic columns of A form a basis for Col(A).

Proof.
Let A be m × n and denote its columns as v1, ..., vn. Let Ar
be the row echelon form of A and denotes its columns as
w1, ...,wn. Let wi1 , ...,wik be the basic columns of Ar . Each
has more zeros, so wi1 , ...,wik are linearly independent. By
definition of row echelon form, the final m − k rows of Ar are
all zero. Therefore dimCol(Ar) ≤ k, and wi1 , ...,wik must be
a basis for Col(Ar).
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Continued.
Now we show that vi1 , ..., vik are a basis for Col(A). Suppose

c1vi1 + ...+ ckvik = 0.

Then we could do Gaussian elimination to convert this
system to

c1wi1 + ...+ ckwik = 0.

wi1 , ...,wik are linearly independent so c1 = 0, ...ck = 0.
Add any other vj , j ̸∈ {i1, ..., ik}, then by the same argument
there must exist a non-zero c than solves

c1vi1 + ...+ ckvik + cjvj = 0.

Thus, vi1 , ..., vik is a basis for Col(A).
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Corollary
The dimensions of the row and column spaces of any matrix
are equal.

Corollary
rankA = rankAT .
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Null space

Definition
Let A be m by n. The set of solutions to the homogeneous
equation Ax = 0 is the null space (or kernel) of A, denoted
by N (A) (or Null(A)).

Definition
Let V ⊆ Rn be a linear subspace, and let c ∈ Rn be a fixed
vector. The set

{x ∈ Rn : x = v + c for some v ∈ V}

is called the set of translates of V by c, and is denoted
c + V . Any set of translates of a linear subspace is called an
affine space.
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Lemma
Let Ax = b be an m by n system of linear equations. Let x0
be any particular solution. Then the set of solutions is
x0 +N (A).

Proof.
Let w ∈ x0 +N (A). Then

Aw =A(x0) + A(w − x0︸ ︷︷ ︸
∈N (A)

)

=b + 0.

Let w be a solution to Ax = b. Then

A(w − x0) = Aw − Ax0 = 0

so w − x0 ∈ N (A) and w ∈ x0 +N (A).
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Theorem
Let A be an m by n matrix. Then dimN (A) = n − rankA

Proof.
• Let u1, ...,uk be a basis for N (A). We can add

uk+1, ..., un to u1, ..., uk to form a basis for Rn.
• Show that Auk+1, ...,Aun are a basis for the column

space
• linearly independent
• span ColA.
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Relationship among row,
column, and null spaces

• Col(A) = Row(AT ) ⊆ Rm

• Row(A) = Col(AT ) ⊆ Rn

• N (A) ⊆ Rn and N (AT ) ⊆ Rm

• Let x ∈ N (A), y ∈ Row(A), what is ⟨x, y⟩?
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